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- Past: from soft-decoding of binary convolutional
codes to trellis coded modulation, multilevel coding,
dense lattices.

* Present: concatenated coding and iterative
decoding, joint equalization and decoding, MIMO
systems, space-time coding.

» Outlook: what comes next — another big topic?

extended phase of consolidations? What are the
challenges?
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Soft / hard decoding (SD/HD) of binary convolutional codes
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1965 - 1975

« Known: soft decoding of binary codes can provide an
improvement of =~ 2 dB over hard decoding.

* Designing signal codes with large free Euclidean distance
could have easily been seen as an important goal.

 But research concentrated on “error control codes”,
usually in combination with binary modulation, where
Hamming and Euclidean distance are equivalent.

* The paradigm was: hard-decision symbol decoders can

make errors; so, transmit redundant check bits and let an
error control decoder detect and/or correct the errors.
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Receiving signals in additive white Gaussian noise
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Capacity of 2-D AWGN channel with discrete input / soft output
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Trellis coded modulation: the first useful code (1975)

4-state coded 8PSK: 3 dB gain over uncoded QPSK (same rate and bandwidth)

Set partitioning / mapping
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Four-state systematic recursive encoder
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From binary modulation to higher order modulations
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Binary convolutional codes with QPSK
modulation (4-256 states)

Free Euclidean distance relative to QPSK [ dB ]
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Effective coding gain (dB)

Slide 9

TCM: Effective coding gain vs. decoding complexity
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Applications of TCM

* Dial-up modems: V.32, V.17, V.34, V.90, V.92

 Digital subscriber links: SHDLS, ADSL, VDSL

« Cable modems: downstream J.83, upstream Docsis 2.0
* Terrestrial TV: VSB modem

« Ethernet: 802.3 1 Gbit/s over copper

» Wireless LAN: 802.11g

« Mobile telephony: GSM Edge

- WPAN: 802.15 ... etc.
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Multilevel coding and multistage decoding (Imai&Hirakawa 1977)

(Lattice = infinite symbol constellation with algebraic group properties)

Multi-level construction:
Gosset lattice E; from (Z?)*
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Multistage decoding (= suboptimal bounded distance decoding)

1. Find most - likely codeword ¢doe?, assuming unconstrained ¢, c?
2. Find most - likely codeword ¢loce! for given ¢? =¢9, assuming unconstrained ¢?

3. Find most - likely codeword ¢? OC? for given ¢ =¢% ande! = ¢!
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Dense lattices

Barnes-Wall Lattices

Schlafi Gosset

2
Y4 D, Eg Nig N3; N4 Niog
V.= 1(0dB) ~2(1.5dB) 2(3dB) ~2(1.5dB) 4(6dB) 4v2(7.5dB)  8(9dB)
Koupin = 4 24 240 4'320 146'880 9'694'080  1'260'230400
Koin /N = 2 6 30 270 4590 151'470 9'845'550
Constructions are based on set partitioning of component integer lattices and
multilevel coding with Reed-Muller codes (many equivalent constructions)
Hexagonal Leech
H, Log
Yo = 1.15 (0.62dB) 4 (6 dB)
K min = 6 196'560
K. i, /N = 3 8190
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Dense lattices
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Types of code concatenation

Parallel concatenation

row codewords first codeword

data: TX

| |
dafa: X GhKT T W
| |

second codeword

chk1: TX

chk2: TX

SPJOMBPOD UWN|O9

XL ‘242

Serial concatenation

inner codeword

data | chk1 |

|
data: [TX chk1: [TX \% /
|

data+chk1: TX [ chk2: TX

X1 :2AYd

outer codeword

Product codes

Low density parity check codes (Gallager 1963)

dafa: [TX chk1:[TX | 7 data:TX | chkTX |

X1 2342

individual sparse check constraints

"Checks on checks": row and column codes must be linear and over the same field
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Cycle-free Tanner graph and Pearl’s “belief” propagation

Variable node with noisy observation

Variable nkrtn)de\w/o observation

/ ("hidden" variable)

Check hode

i SN

Subtree T,

Subtree T,

check-to-variable likelihoods
XE, (X) = extrinsic probabilities

a priori n
probability X(X)/

variable-to-check probabilities

observation

74

Mx(x)

a posteriori
probability

G

Subtree T,
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Parallel concatenated codes, turbo decoding (1993)

| Ptyck gen p;(u) - MR
"I code1 1o "
£
u u o| £ Y,
o
v )
Inter- | Ptyck gen p;(u) RE: Yo
leaver code 2 i’ "

Iterative ("Turbo") decoding
introduced by Berrou & Glavieux
achieves near-optimum decoding
by message passing of marginal
probabilities. This leads to cycles
in the Tanner graph. The effect of
cycles is mitigated by using long
randome-like interleaving.

Slide 16

Tanner graph for
vector variables
E1: code-1
constraints

¢ Agu(w)
< v T
? Ag,u(w)

E2: code-2
constraints

- optimum decoding (no cycles)
- requires passing of joint probabilities
- too complex, except for very short codes



Iterative decoding of parallel concatenated code (PCC)

Tanner graph explaining Turbo decoding n=1,3,- N
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Foreveryi (1<i<K):

extrinsic marginal probability from decoder 1
is used as a priori probability for decoder 2



Cycles, states, and forward-backward algorithm

Recursive Systematic enCoder (SRC)

1
Yn

0__0 0 1
Yn = ¥Yna O Yn-2 O Yn-1
r D {9% D

1. Cycles can be
eliminated by
introducing
states.

2. States are
composite
hidden variables
or functions of
variables.
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Tanner graph without states: cycles
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Tanner-Wiberg-Loeliger graph: states eliminate cycles

I ILIX

Belief propagation = forward-backward = BCJR algorithm
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Analysis of concatenated codes & iterative decoding

* Benedetto, Divsalar, Montorsi, Pollara (1996-98): estimated
BER for ML decoding of PCCCs and SCCCs based on average weight
enumeration assuming uniform random interleaving. Results illustrate
interleaver gain, near Shannon-limit performance at moderate SNR,
change of slope due to low-weight codewords at high SNR.

» Gallager (1963), Richardson and Urbanke (2001): density
evolution in message-passing decoding for ensemble of random infinite-
length LDPC codes; SNR threshold for convergence interpreted as
“capacity” of LDPC code.

- Divsalar, Hagenauer, ten Brink, et al. (1998-2001): soft-in soft-
out (SISO) decoders viewed as “SNR-improving” devices - EXIT
charts.
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Iterative equalization and decoding

L
Xpn = than—f +Wn
£=0

— SISO

equalizer | extrinsic info

on modulation
symbols

A 4

a priori info on
modulation symbols

N-! & de- | SISO
mapping a priori info on decoder
code symbols
) extrinsic info on
Mapping ’ code symbols
&Il

;G\ >

A a posteriori info
on data symbols

" Trellis based APP equalizer - too complex (except in very simple cases)

* Linear MMSE equalizer with a priori info (symbol means and variances)
- no a priori info: ordinary MMSE equalizer

|

- perfect a priori info: 1SI cancellation + matched filtering

M. Tiichler, Ralf Koetter and A. Singer, “Turbo equalization: principles and new results,” IEEE Trans. Comm., vol. 50, pp. 754-683,

May 2002.

D. Raphaeli and A. Saguy, “Reduced complexity APP for turbo equalization,” IEEE Int’] Conference on Communications (ICC), vol.

3. pp. 1940-1943, 2002.
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Iterative equalization and deCOding: E Xtrinsic Information I ransfer Chart

0.8

06 -

0.4

o2lf ——_———————— ‘

BCC G=[7,5], binary modulation,
Proakis C channel, E /N, =4 dB
( Tuechler et al., May 2002 )

0 0.2 0.4 0.6 0.8 1

Mutual information [(X,Equalizer out) = I(X,Decoder in) [bit]

Mutual information 1(X,Decoder out) = I(X,Equalizer in) [bit]
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Multiple-input multiple-output (MIMO) channels

[)
: : ;
H [} )
H [} )
§ : H
v v
! rotation ! rotation E
E and/or ! (and/or :
ireflection i reflection)
B ‘ H
i ‘ 1
' :
| i :
0

Singular value decomposition H = Uy R

0 VA, vy

Rank M <Min(Ny,Ng)

. . A N E,/Ng
Fixed H:  Capacity C(H) =) log,(1+pA;) (= log, [det(I + pHH )] ), p= SN
i=1 0
Random H: Ergodiccapacity C = average C(H) ; Outage capacity C, 1 Pr(C(H) <C,) =p (%)

H
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Equalization strategies for MIMO channels

Frequency selective channels can be converted into non-frequency
selective vector channels by FDM (OFDM/DMT, filter banks)

Spatial MIMO equalization

Linear at receiver right-multiply H by H'1(r)
Linear at transmitter left-multiply H by H',
Linear at transmitter left-multiply H by U~*,

and receiver | right-multiply H by V* (SVD)

Nonlinear at receiver matrix DFE (BLAST, MUD)

Nonlinear at transmitter | matrix precoding (MUP)

(for spatial signals in row-vector form)
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MIMO system: decentralized transmitters, centralized receiver

Spatial DFE = simple* multi-user detection (MUD) = BLAST

* advanced MUD employes iterative processing

aq T Performance depends
on order of detection

Q*H={ G il

&>

R I-B
/< \.\\
aN T B
R G B
-1
Iy L L3 || 0 0 1 b, by
0 1‘22 I'2 3 0 1'2_21 0 = 0 1 b 23

0 0 r3//0 0 3] [0 0 1
la, a, a3]B=[a; ab,+a, abj3+a,by; +as]

QR decompositions H=R;Q; =Q,R, ... R=upper or lower triangular, Q = unitary; different orderings...
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MIMO system: central transmitter, decentralized receivers

Spatial TH precoding = Multi-user precoding (MUP)

'
al + klMp + nl

2
N4

H=QR
G
B! B an TkyM, +ny
aN
O > J_ ——>

[ x=a; x,=(a —x1b2) +koMy - X3 =(a3 =x;by3 =X5ba3) +k3M J

R. Fischer, J. Huber, and G. Komp, "Coordinated digital transmission: theory and examples," Archiv fiir Electronik und Ubertragungstechnik,
48, pp. 289-300, Nov/Dec 1994. (see also J. Huber and R. Fischer, "Dynamically coordinated reception of multiple signals in correlated
noise," Proc. of the IEEE Int'l Symp. Inf. Theory, pp.132, Trondheim, Norway, June 1994).
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M independently

Receiver diversity

Maximum ratio

2, 2 2
(w2} = No (b, 2+ fhy )

fading paths combining
D~ *
h, - hy
h, e . ) )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ > y= (I + oy 2)VE.a+w
VES a . A >
| hy M-branch
diversity gain
10°
— AW G _
----- Rayleigh channel
-—-— 2 branch diversity -
T - 1decade/10dB *
= T~ ]
"~.__ 2decades/10dB :
Source: H. Boelcskei x'x'hE
1I5 =20 I BID {3:5 40
EbMD (dE)
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Transmit diversity and a simple space-time code

Alamouti (IEEE JSAC, Nov 98)

[ a a2] Thl

it TzT o xl=l ] ey n)

Slide 27

[n hz][xl

X2

X2
*
- x|

i val= (P +I? )2y as]+[n) nj]

o >

2-branch
diversity gain
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MIMO channels and space-time coding: objectives

« Spatial multiplexing gain
— creation of multiple channels within same bandwidth
 Diversity gain

— mitigation of fading losses by averaging over individually
fading paths

« Coding gain

— increasing distance between codewords / sequences by
improved arrangements of points in higher dimensional
spaces
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Throughput in MIMO-OFDM cellular systems

1x1 1x2 2x3

OOMbps 1.1Mbps 22Mbps 3.4MMbps 4.5Mbps 5.6Mbps B7Mbps S0Mbps 11.2Mbps13.SMbps
Source: H. Boelcskei
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What comes next in coding?

Concat. codes and |
turbo decoding |
|

Error control coding  Signal-space |

|
coding MIMO and ! ?
S-T coding !
| [ |
|
30 years 15 years S years :
5 years |
|
|
1948 1978 1993 1998 2002i

(a) That's all, folks!
(b) Another big topic?

(c)| Extended phase
of consolidations?
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Challenges ahead

* Develop new standards exploiting the exciting

potential of MIMO and S/T coding: G3+ cellular systems,
Gbit/s wireless Ethernet, ... using base stations with multiple
antennas, mobile stations with 1 - 2 antennas.

— optimize network capacity by S/T coding, multi-user
detection, multi-user precoding, beam forming, ...

— channel estimation; PHY and MAC protocols

* Performance / complexity in turbo and S/T coding:
many schemes proposed, few adopted in applications, what is
most useful?
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Challenges ahead

« Concatenated codes & iterative decoding for very low
error rates: e.g., 10 Gbit/s optical links, BER=10-12 — 10-15,

» Soft-decoding of widely used algebraic FEC codes:
known soft-decoding algorithms are too complex or provide only
small gain, for e.g., RS(255,239).

* Designing chips of massive complexity

* Develop market for these new technologies.
Succeed under slower market conditions.
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