
CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING


UNIVERSITY of CALIFORNIA - IRVINE

Communication Systems

Multiple antennas (MIMO)

4G standards, diversity vs. throughput, beamforming, channel feedback, novel antennas

Interference mitigation

more users, more data, pico- and femto-cells, wireless backhaul, fixed spectrum

Network cooperation

multi-cell transmission, relaying, network coding

Advanced receiver designs

ML-like (sphere) decoding, multi-user detection, advanced coding

Multimedia services

Delay and QoS constraints, protocols for multi-priority traffic

Cross-layer designs

Ad hoc networks, joint optimization of PHY, scheduling and routing

Wireless security

Eavesdropping, spoofing, jamming, other network attacks

Communication Systems Faculty

Ender Ayanoglu (Stanford '86) MIMO Advanced receivers Network cooperation

Hamid Jafarkhani (Maryland '97)

Interference mitigation Network cooperation Multimedia services

Ahmed Eltawil (UCLA '03) MIMO Advanced receivers Network cooperation

Lee Swindlehurst (Stanford '91) MIMO Interference mitigation Wireless security

Syed Jafar (Stanford '03) MIMO Interference mitigation Network cooperation

Homayoun Yousefi'zadeh (USC '97)

Network cooperation Multimedia services Cross-layer designs

Communication Systems Faculty

Ender Ayanoglu (Stanford '86) MIMO Advanced receivers Network cooperation

Hamid Jafarkhani (Maryland '97) Interference mitigation Network cooperation Multimedia services

Ahmed Eltawil (UCLA '03) MIMO Advanced receivers Network cooperation

Lee Swindlehurst (Stanford '91) MIMO Interference mitigation Wireless security

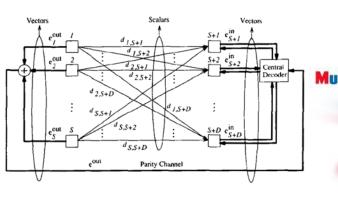
Syed Jafar (Stanford '03) MIMO Interference mitigation Network cooperation

Homayoun Yousefi'zadeh (USC '97)

Network cooperation Multimedia services Cross-layer designs

CENTER FOR PERVASIVE

UNIVERSITY of CALIFORNIA - IRVINE


Past Research

Ender Ayanoglu

5,394,437

hrnadhand

Feb. 28, 1995

[75] Inventors: Ender Ayanogin, Atlantic Highlands; Nuri R. Dagdeviren, Red Bank; James E. Mazo, Fair Haven; Burton R. Saltzberg, Middletown, all of NJ. Multiwavelength Optical NETworking Optical NETworking Bell Atlantic Nucern Technologies Bell Atlantic Market Technology Bell Atlantic Market Technology Bell Atlantic

United States Patent [19]

[54] HIGH-SPEED MODEM SYNCHRONIZED

TO A REMOTE CODEC

Ayanoglu et al.

Primary Examiner—Stephen Chin Assistant Examiner—Amanda T. Le Attorney, Agent, or Firm—Henry T. Brendzel

[11] Patent Number:

[45] Date of Patent:

[57]

US005394437A

ABSTRACT

A modem that operates reliably at a symbol rate that corresponds to twice its bandwidth even when it is coupled to a receiving A/D converter that operates under control of a clock is realized by synchronizing the modem's operation to the A/D's clock. The superior operation of this modem advantageously extends to A/D clock frequencies beyond the frequency of twice the modem's butput is conditioned to minimize intersymbol interference by adjusting the modem's output to the A/D converter's sampling times and slicing levels. When the A/D's clock is higher than twice the

Diversity coding

UNIVERSITY CALIFORNIA RVINF

- 56K modems
- Wavelength division multiplexing
- Wireless packet transmission

Current Research Ender Ayanoglu

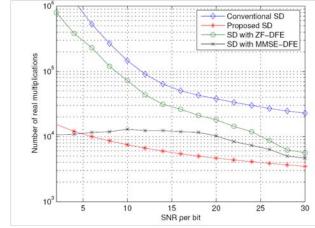


TABLE I Comparison of the Maximum Number of VoIP Connections

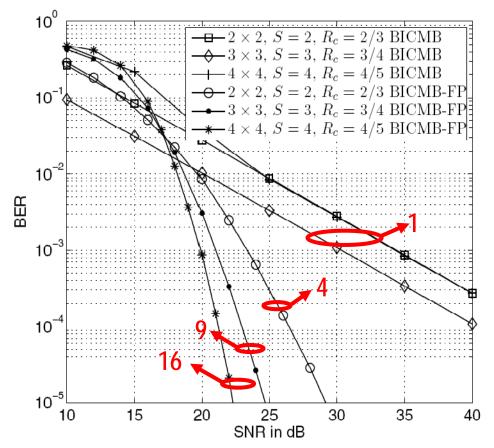
Sample Period	G.711				G.729			
Sample Feriod	Proposed/Simulation	[22]	[32]	[39]	Proposed/Simulation	[22]	[32]	[39]
10 ms	27/27	29	21	26	29/29	30	22	27
20 ms	49/49	52	38	46	56/56	59	43	53
30 ms	70/70	74	53	68	85/85	88	65	82
40 ms	87/87	92	67	84	112/112	117	85	110
50 ms	102/102	108	79	99	139/139	145	106	136
60 ms	115/115	121	89	111	166/166	173	128	162

• Recent work

CENTER FOR PERVASIVE

COMMUNICATIONS & COMPUTING

JNIVERSITY OF CALIFORNIA - IRVINE


- Analysis and design of beamforming techniques for maximum throughput and maximum diversity in multi-input multi-output wireless networks
- Reduced complexity sphere decoding, orthogonal and quasiorthogonal space-time block decoding
- Analysis of 802.11e Medium Access Control algorithm
- Quality-of-Service scheduling in 802.11e
- Network coding for network restoration

Maximum Throughput vith Maximum Diversity

Constellation Precoded Bit-Interleaved Coded Multiple Beamforming

16-QAM, 64-state punctured convolutional code

Related Poster Presentations

"Golden Coded Multiple Beamforming" Boyu Li and Ender Ayanoglu

"Hitless Recovery from Link Failures in Networks with Arbitrary Topology" Serhat Nazim Avci, Xiaodan and Ender Ayanoglu

Communication Systems Faculty

Ender Ayanoglu (Stanford '86) MIMO Advanced receivers Network cooperation

Hamid Jafarkhani (Maryland '97)

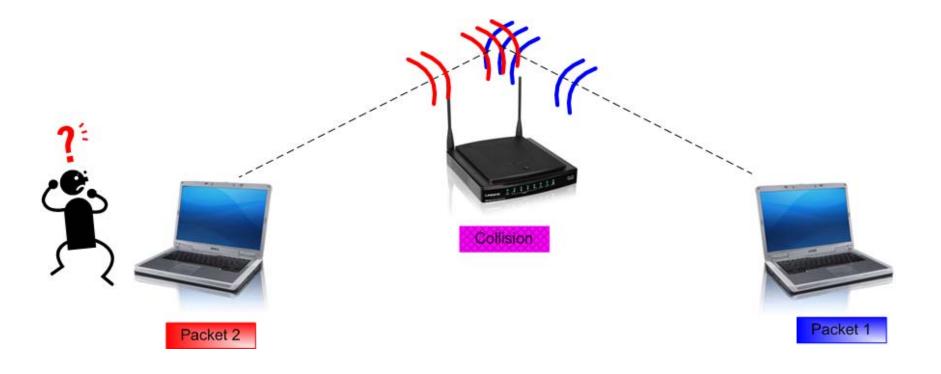
Interference mitigation Network cooperation Multimedia services

Ahmed Eltawil (UCLA '03) MIMO Advanced receivers Network cooperation

Lee Swindlehurst (Stanford '91) MIMO Interference mitigation Wireless security

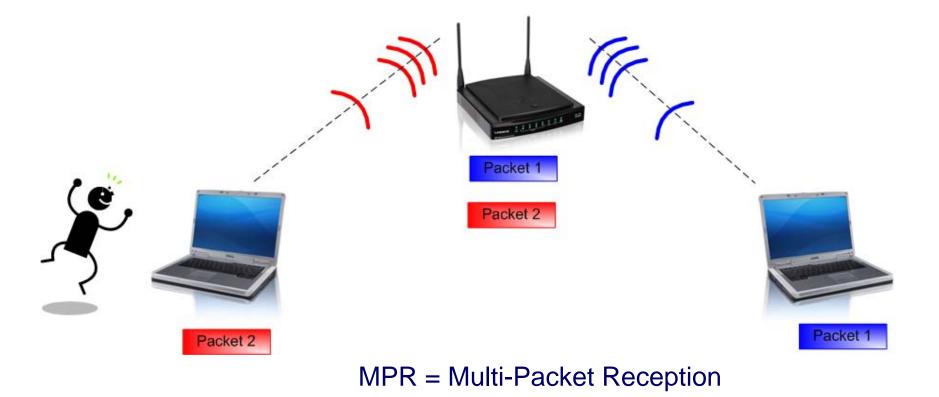
Syed Jafar (Stanford '03) MIMO Interference mitigation Network cooperation

Homayoun Yousefi'zadeh (USC '97)


Network cooperation Multimedia services Cross-layer designs

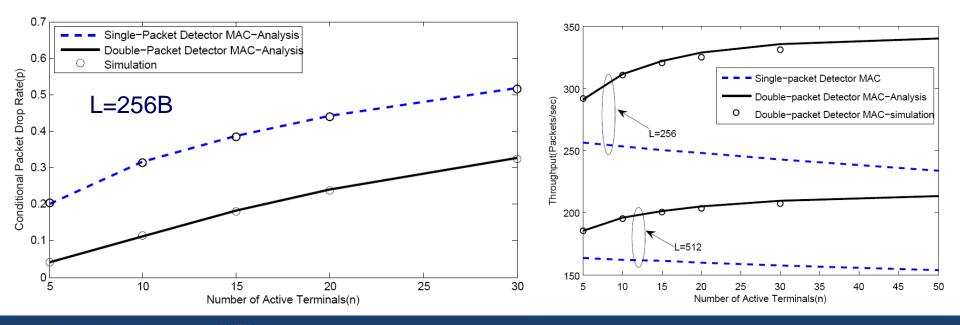
Multiuser Wireless Networks

Interference is the main challenge in multiuser wireless networks



Interference Mitigation

We have proposed different approaches to mitigate interference in the PHY instead of avoiding collisions in higher layers



Cross-Layer nterference Mitigation

- Designed a MAC layer to support the MIMO systems with PHY-layer interference cancellation
- Compared interference cancellation in the PHY layer with collision avoidance in the MAC layer
- Cross-Layer Design: Closed the PHY-MAC design loop by considering the effects of the MAC layer design on the PHY layer and handling the corresponding synchronization issues

- Results of NS-2 simulation
- No hidden terminal
- L=payload length
- Considerably higher saturation throughput for MPR, and throughput grows with number of active users
- Significantly lower packet drop rate for MPR

- If feedback quality is low, beamforming schemes should gradually fall back to nonbeamformed schemes.
- Perfect Channel Feedback Beamforming

What about in-between cases? How do we design beamformers for multiuser and cooperative networks?

- Transmitting video (H.264 bit stream) over wireless networks.
- The main challenges are
 - Protection against wireless channel noise, fading and packet erasure
 - Quality assessment
 - Real-time operation:
 - Delay
 - Computational Complexity

"MAC/PHY Cross-Layer Design with Asynchronous MIMO-MPR" Sanaz Barghi, Hamid Jafarkhani and Homayoun Yosefi'zadeh

"Beamforming in Wireless Relay-Interference Networks with Quantized Feedback" Erdem Koyoncu and Hamid Jafarkhani

"Performance of H.264 with Isolated Bit Error: Packet Decode or Discard?" A. Murat Demirtas, Hamid Jafarkhani and Amy R. Reibman

"Cognitive MANETs Testbed and Protocols" Homayoun Yousefi'zadeh and Hamid Jafarkhani

Communication Systems Faculty

Ender Ayanoglu (Stanford '86) MIMO Advanced receivers Network cooperation

Hamid Jafarkhani (Maryland '97) Interference mitigation Network cooperation Multimedia services

Ahmed Eltawil (UCLA '03) MIMO Advanced receivers Network cooperation

Lee Swindlehurst (Stanford '91) MIMO Interference mitigation Wireless security

Syed Jafar (Stanford '03) MIMO Interference mitigation Network cooperation

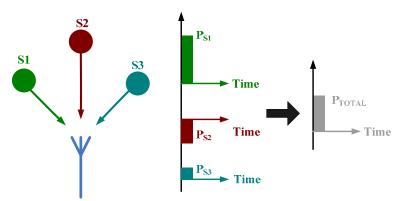
Homayoun Yousefi'zadeh (USC '97)

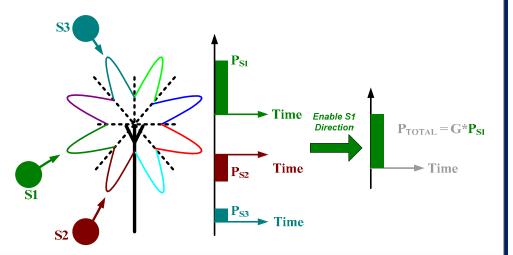
Network cooperation Multimedia services Cross-layer designs

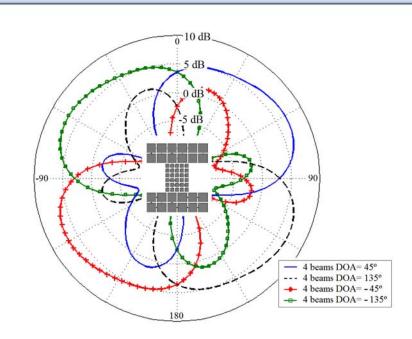
- Relay and sensor networks
 - Increasing range and possibly capacity of wireless systems via relays.
 - Sensor network design for applications such as smart grids.

Efficient MIMO Systems

- Improving the capacity of wireless system via precoding and feedback.
- Efficient architectures such as sphere decoders, FEC architectures, etc
- Link performance improvement using directional antenna systems based on MEMS technologies



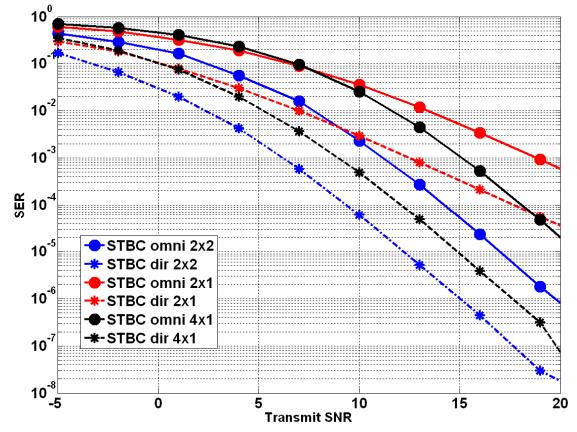

CENTER FOR PERVASIVE


UNIVERSITY of CALIFORNIA - IRVINE

Omni vs. Directional Antennas

P_{s1}, P_{s2} and P_{s3} are received all the same time therefore irresolvable when received with an Omni-directional antenna

Extra antenna modalities require fast direction finding and training techniques.



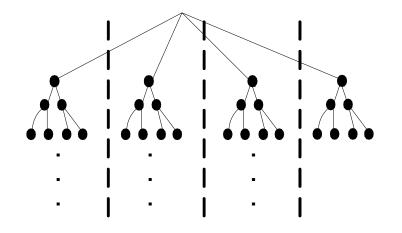
System Performance

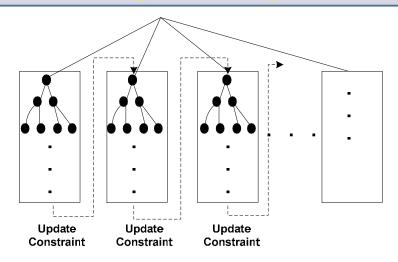
- System Setup
 - □ OFDM
 - □ 1024 Subcarriers
 - □ 50 Hz Doppler

MRA features:

- □ 8 beam directions
- One beam active at a time
- Constant antenna receive gain in the active beam

- Lower SER using directional antennas in all cases
- Better performance in low SNR for 2x1 STBC directional than 2x2 STBC Omni

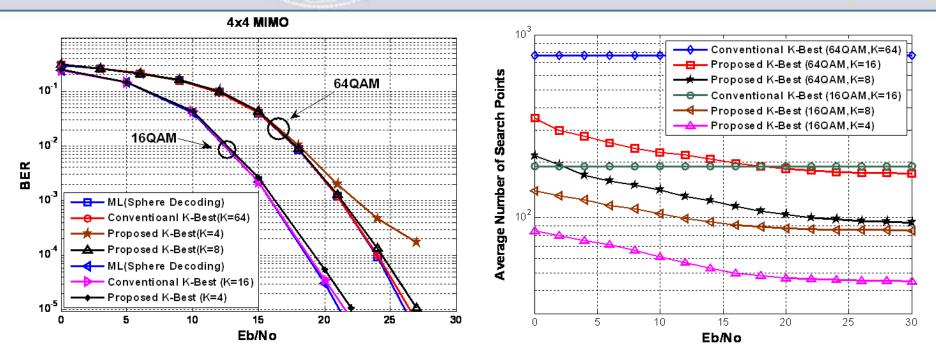



CENTER FOR PERVASIVE

UNIVERSITY of CALIFORNIA - INVINE

Radius Shrinking and Early Termination

K-Best Decoder with


- A tree can be decomposed into individual sub-branches
- Each sub-tree searched by a K-Best decoder with reduced K (Reduced Dimensionality)
 - Decrease complexity for the computational units and storage spaces.
- Aggressive branch pruning based on radius update
 - Early termination is possible

Simulation Results: BER & Complexity

CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING

QAM	Approach/Parameter	Away from ML at BER = 10 ⁻³	Away from ML at BER = 10 ⁻⁴
64	K-Best with K = 64	< 0.1 dB	0.1 dB
	Proposed with K' = 8	0.1 dB	0.6 dB
	Proposed with K' = 4	1 dB	> 3 dB
16	K-Best with K = 16	< 0.1 dB	0.1 dB
	Proposed with K' = 4	0.2 dB	0.7 dB

"MIMO Decoder Based on Tree-Search Approaches: Algorithm and VLSI Architecture" Chung-An Shen and Ahmed M. Eltawil

"Cognitive Low Power Wireless Communication Systems" Muhammad Khairy, Amin Khajeh, Fadi Kurdahi and Ahmed Eltawil

"Agile, Multi-Antenna Capable SDR Platform for Advanced Public Safety Communications"

Chitaranjan Pelur Sukumar, Hamid Eslami, Gaurav Patel, Fadi Kurdahi and Ahmed Eltawil

Communication Systems Faculty

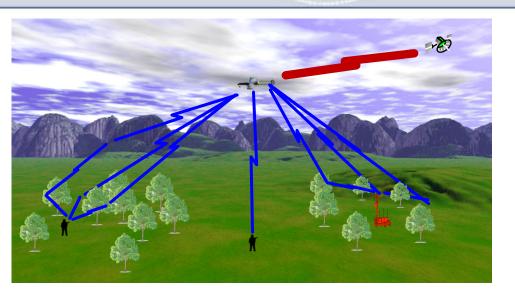
Ender Ayanoglu (Stanford '86) MIMO Advanced receivers Network cooperation

Hamid Jafarkhani (Maryland '97) Interference mitigation Network cooperation Multimedia services

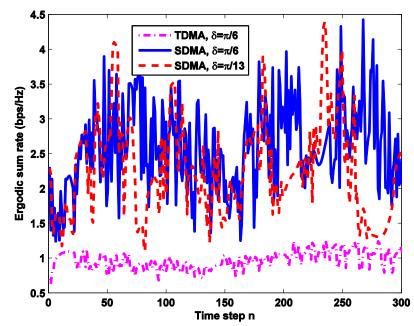
Ahmed Eltawil (UCLA '03) MIMO Advanced receivers Network cooperation

Lee Swindlehurst (Stanford '91) MIMO Interference mitigation Wireless security

Syed Jafar (Stanford '03) MIMO Interference mitigation Network cooperation


Homayoun Yousefi'zadeh (USC '97)

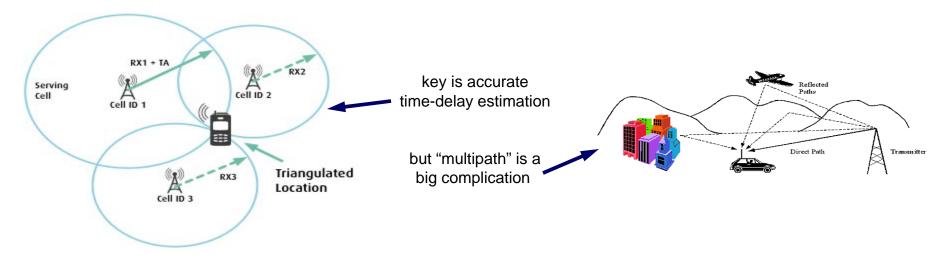
Network cooperation Multimedia services Cross-layer designs



UAV Positioning for Ground-to-Air Uplink

- UAVs already widely used for surveillance and "ordnance delivery"
- Smaller agile platforms also considered for tactical communications (relaying, downlink broadcasting, etc.)
- UAVs under consideration: large enough for multiple antennas, payload must be lightweight, energy consumption is important, algorithm complexity is thus a key issue

- We have developed low complexity algorithms for adaptively positioning non-hover UAV for optimal uplink communications
- Studied various trade-offs: TDMA vs. SDMA, throughput vs. fairness



CENTER FOR PERVASIVE

UNIVERSITY of CALIFORNIA - IRVINE

OFDM Signal Design for Positioning & Communications

- **<u>Project Goal</u>**: design OFDM signal optimized for both positioning and high-rate communications
- <u>Benefits</u>: allows for single-receiver architecture, less expensive devices, lower power convergence of GPS and cellular => positioning indoors or dense urban canyons

- Derived optimal pilot distribution, with adjustable accuracy for time-delay and channel estimates
- Pilot energy not uniformly distributed (prior work) pushed to band edges for time-delay accuracy
- Surprising outcome: optimal pilot distribution is sparse without being constrained to be so

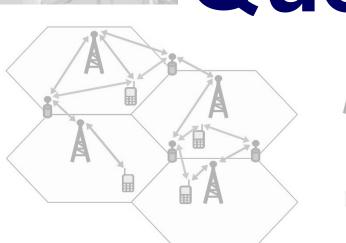
- Security typically handled by cryptographic techniques implemented at higher layers
- Key distribution and management is complicated and has a high overhead
- Vulnerabilities also exist in *ad hoc* networks with no central infrastructure and where nodes randomly join and leave the network
- Physical layer methods exist to achieve security when encryption is not possible
- Even if encryption is available, PHY-layer techniques can be used to augment security
- <u>Project Goal</u>: Investigate PHY-layer security techniques for multiple-antenna networks, employing beamforming and jamming
- <u>Scenarios Considered</u>:
 - simple wiretap channel
 - interference channel
 - cooperative jammers (helpers)
- broadcast channel
- two-hop relay channels
- two-player eavesdrop/jamming games

Related Poster Presentations

"Dynamic UAV Positioning for the Ground-to-Air Uplink" Feng Jiang and A. Lee Swindlehurst

"Signal Design for Combined Positioning and Communication Systems" A. Lee Swindlehurst and Gonzalo Seco-Granados

"Physical Layer Security for Wireless Networks" Ali Fakoorian, Jing Huang, Amitav Mukherjee and A. Lee Swindlehurst


"Closed Loop Tracking Using Multi-Modal RF/EO Sensors" Sean O'Rourke and A. Lee Swindlehurst

CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING

UNIVERSITY of CALIFORNIA - IRVINE

Mobile

Wireless Mesh Set