

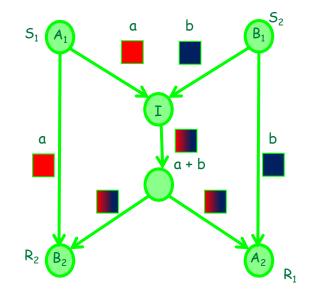
CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING

UNIVERSITY of CALIFORNIA - IRVINE

CPCC Networking

Faculty

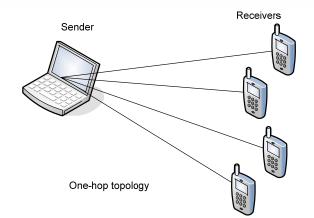
Hamid Jafarkhani Ah Anima Anandkuma

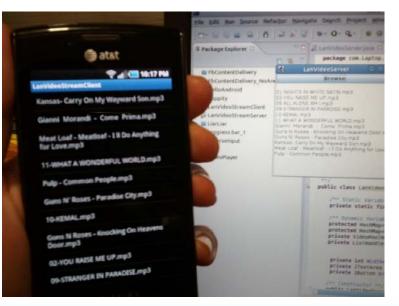

Ahhmed EltawilHomayoun Yousefi'zadehnaAthina Markopoulou

Network Coding

- Basic Idea
 - Allow intermediate nodes to combine packets
 - Receivers must decode to obtain source packets
- Benefits
 - Can improve throughput
 - Can make distributed scheduling easier
- Potential Applications
 - Wireless multihop networks
 - Peer-to-peer networks

Network Coding


Example Projects


Making Network Coding Practical:

- Cross-layer Optimization of Coded
 Wireless Networks
 - Make network coding work best with TCP or video traffic and in the presence of loss [see poster]
- Network Coding and Topology Inference
 - Use network coding to reverse engineer properties of the network [see poster]
- Network Coding and Security
 - Network coding is vulnerable to byzantine pollution attacks
 - Novel security mechanisms are needed
- Network Coding and Interference
 Alignment
- Implementation on Smartphones

California RVINF

At the MAC (for wireless) or the application (for p2p) layers [see poster]

MIMO Radio Testbed

- Developed reference OFDM and OFDMA systems to evaluate performance of key wireless communications algorithms
 - Spectral efficiency: Up to 4x4 MIMO
 - Reconfigurability:
 - Meters: providing signals to be used in the decision engine (cognitive and software defined radio research)
 - Capability to experiment with multiple algorithms:
 - Modular design with de-centralized scheduling
 - Sphere decoding architectures
 - Channel estimation techniques
 - Low Power VLSI architectures
 - Reconfigurable architectures, e.g., FEC
 - Block boundary detection
 - Synchronization techniques etc.

- WARP: Wireless Open Access Research Platform from Rice University
 - Programmable carrier frequency (2.4, 4.9, 5 GHz)
 - Virtex-II pro FPGA (PHY)
 - Embedded microcontroller (MAC)
 - Support up to 40MHz of bandwidth
- Daughter Card supports Virtex-5 FPGA for expandability

CENTER FOR PERVASIVE

COMMUNICATIONS & COMPUTING

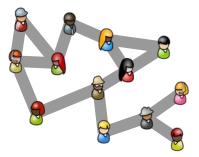
UNIVERSITY of CALIFORNIA - IRVINE

CENTER FOR PERVASIVE

UNIVERSITY of CALIFORNIA - IRVINE

Online Social Networks (OSNs)

More and more of human online activity is carried on or influenced by OSNs. E.g., email communication; voice and video communication (skype); photos and videos (flickr, youtube); news; recommendation systems...

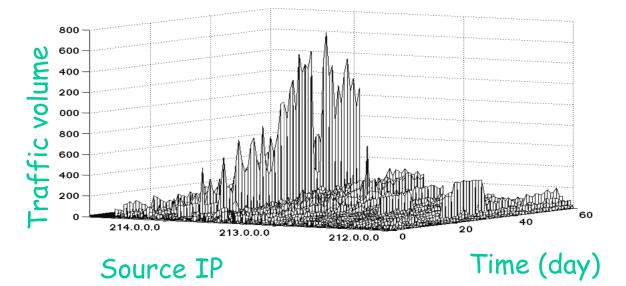

	Size	Rank
facebook	500 million	2
	200 million	9
a place for friends	130 million	12
orkut	100 million	43
twitter	75 million	10
Linked in	75 million	29
(in November 2010)	> 1 billion	users

- > 15% of world's population
- > 50% of world's Internet users

- **Sampling:**Crawl OSN graphs and obtain representative samples
 - Random Walks on Facebook
 - Exploration techniques (e.g. Breadth-First-Search)
 - Multigraph Sampling of Last FM
 - Stratified Sampling of Facebook

Content distribution

- Content becomes popular over OSNs (overlay) but eventually is carried over the communication infrastructure (underlay)
- 3G operators can use mechanisms (pre-fetching, caching, ad-hoc connectivity) to off-load their network
- [see Poster on "OSNs meet Smartphones"]



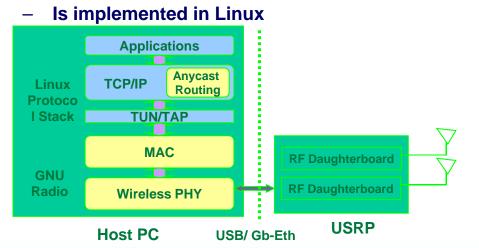
CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING UNIVERSITY of CALIFORNIA - IRVINE

Use measurements of network traffic and machine learning techniques on appropriately selected features to detect/predict malicious activity

Example of information logged per packet

Time	Victim network	Src IP	Dst IP	Src Port	Dst Port	Protocol	Flags
------	-------------------	--------	--------	----------	----------	----------	-------

- Stop Malicious IP Traffic (e.g. DDoS attacks)
 - At the edge of the network:
 - Predict future malicious traffic (using techniques from recommendation systems) based on past measurements at various places in the network
 - Block malicious traffic (using prefix-based filters in TCAM)
- Phishing
 - Classify phishing sites using machine-learning techniques on lexical features only (the URL name) [INFOCOM'11]
 - [see poster on PhishDef]
- Click-Fraud Detection

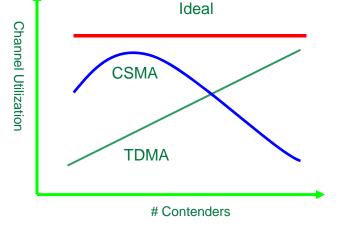


SDR-Based MANET Testbed

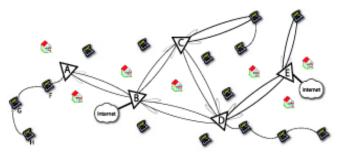
• Universal Software Radio Peripheral (USRP)

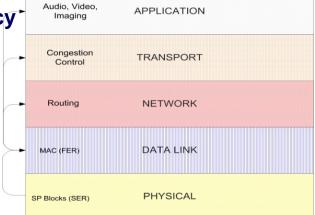
- Enables rapid prototyping of SDRs
- Hardware
 - Motherboard Implements FPGA baseband
 - Connects to GPP using USB/Gb-ETH
 - Daughterboards implement RF front-end
- Is Programmed Using GNU Radio
 - Implemented in Python/C++ under Linux
- Full IP Stack

RVINE

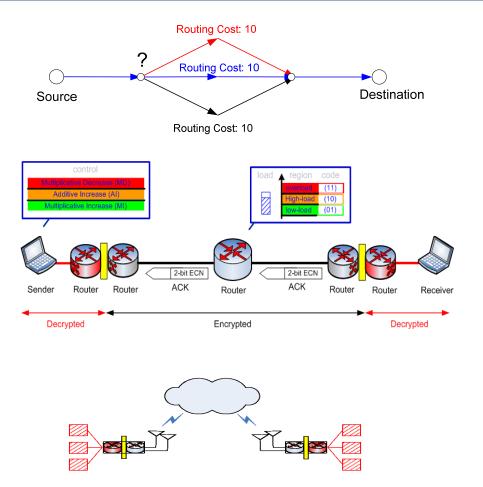

CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING UNIVERSITY of CALIFORNIA - IRVINE

MANET Lower Layer Protocols

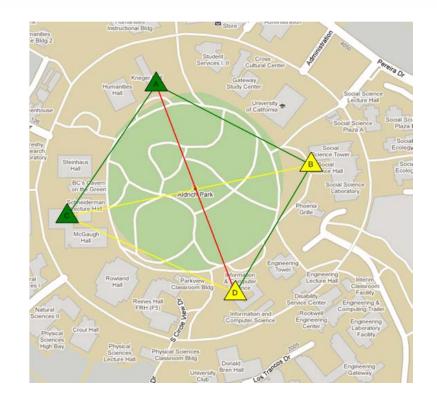

• MIMO OFDM PHY


California RVINE

- MRC, STBC, STTC
- Load Adaptive Hybrid MAC
 - Hybrid CSMA-TDMA Behavior
 - Cooperative LA-MAC


- PHY-MAC Interference Mitigation
 - Simultaneously Transmit on Same Frequency
 - Use MIMO to Extract Collided Signals

- Cross-Layer Routing
 - TCP BIC/CUBIC
 - VCP, MPCP
- Cross-Layer Transport
 - LA-MAC Assisted MDR
 - IPSec Encrypted
- Applications
 - File and Image Delivery
 - Stored/Live Audio Delivery
 - Stored/Live Video Delivery

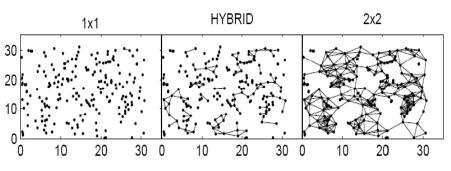

ANET Upper Layer Protocols

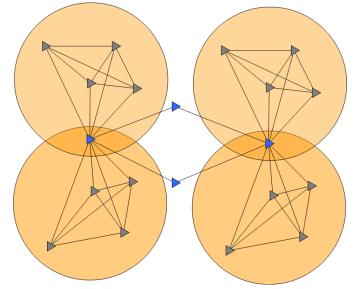
Cognitive Network Monitoring

New Horizon

- SOA-Based Monitoring
 - Heartbeat Statistics
 thru GPS-Based Laptops
- Connectivity Graphs (PHY/MAC/NETOWORK)
 - LA-MAC reports SINR, SER, and FER statistics
 - MDR HELLO messages reported to the monitoring console
 - Collect Performance Data (Link Quality, Loss, Delay)
 - SNMP MIBs

Cognitive Policy-Based Network Mgmt (PBNM)


CENTER FOR PERVASIVE COMMUNICATIONS & COMPUTING UNIVERSITY of CALIFORNIA - IRVINE


Advantaged Node Placement

New Horizon

MIMO Nodes

- Apps thru NMS Monitoring
 - Healing Partitioned MANETs
 - Reach Back
 - Range Extension
- Connectivity Augmentation A Small No of ANs
 - USRP2, UAVs
 - AN Placement Algorithms
 Small World Phenomenon,
 Percolation, and Graph Theory
 - Formation of ANs Using Cooperative Comm Techniques


Small Form Factor Sensors

New Horizon

- Environments of Interest
 - Position Location Monitoring
 - Battlefield Health Monitoring
 - Civilian medical Monitoring
- Signals of Interest
 - GPS, Audio, Video, Vital Signs
- Technology Platform

- Hardware: Gumstix (Ocero Fire) and Motes (MICAz, IRIS)
- Software: IP Stack under Development at UCI

