

Circuit and Systems Payam Heydari CPCC Department of EECS University of California, Irvine, CA 92697

- Exploring unique opportunity with mutual benefit
- Strong collaborative research with High-Tech Companies in Southern California
 - Numerous research grants and gifts since 2000
 - Published several joint papers with researchers
- Possibility of accessing to CMOS MPW tape-outs
- Proximity of high-tech companies with UC Irvine make this current collaboration much stronger than ever before

- Will sustain excellence in circuit/system design research at UC Irvine
- Will significantly impact the quality of research in the wireless/wireline area at UCI, not to be found in any research groups at other US universities

Practical Ways for Implementation

- Giving strict access of nanoscale CMOS process
- Prepare quarterly report about the research progress
- Tape-out twice a year, with chip size no more than 4×4 mm²

Summary

• Design and implementation of novel circuits and systems for sensing, (medical) imaging, and communications

13 student posters showcasing the research under the circuits and systems trust

Nader Bagherzadeh CPCC, Dept. of EECS, Irvine, CA

- Biometrics
- Network-on-Chip
- Wireless Sensor Network

BIMS

- Biometric Identification on the Move System, BIMS
 - Stage one: Enrollment of high quality fingerprint, iris and face.
 - Stage two: Identification by capturing face, iris and fingerprint from distance:
 - Iris Capturing: Near Infra-red high resolution camera(s)
 - Face Capturing: Multiple pose cameras
 - Fingerprint: Fingerprint on the Move Scanner by moving a hand over a surface.

Advanced Biometrics Identification Research Laboratory

Biometric Identification on the Move System Project Professor Nader Bagherzadeh

Wireless Network-on-Chip

- Use a myriad of communication links for on chip networking
- Congestion-aware routing mechanism
 to balance traffic load
- Quality-aware routing algorithm to intelligently utilize resources
- Fault-tolerance achieved by adaptive routing among hybrid networks
- Hybrid routers (optical, wired and wireless)
- Hardware/software co-design for heterogeneous platforms using hybrid network-on-chip technology

Subnet (0,0)	Subnet (1,0)
BR BR BR BR (2,0) (3,0) (4,0)	
$\begin{array}{c c} BR \\ (0,1) \\ (1,1) \\ (2,1) \\ (2,1) \\ (3,1) \\ (4,1) \\ $	
$\begin{array}{c} BR \\ (0,2) \\ (0,2) \\ (1,2) \\ (1,2) \\ (2,2) \\ (2,2) \\ (3,2) \\ (3,2) \\ (4$	(0,2) + (1,2) + (2,2) + (3,2) + (4,2)
$\begin{array}{c} \mathbf{BR} \\ (0,3) \\ + \\ (1,3) \\ + \\ \end{array} + \begin{array}{c} \mathbf{BR} \\ (2,3) \\ + \\ (2,3) \\ + \\ \end{array} + \begin{array}{c} \mathbf{BR} \\ (3,3) \\ + \\ (4,3) \\ + \\ \end{array} + \begin{array}{c} \mathbf{BR} \\ + \\ \end{array} + \begin{array}{c} \mathbf$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(0,2) $(1,2)$ $(2,2)$ $(3,2)$ $(4,2)$	(0, 2) - (1, 2) - WR (2, 2) - (3, 2) - (4, 2)
(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)	(0,4) (1,4) (2,4) (3,4) (4,4)
Subnet (0,1)	Subnet (1,1)

- Development of Wireless Sensor Network (WSN) for detection of pollutant and illicit material by monitoring Raman scattering using laser based sources.
- Areas of focus are:
 - Low power platform design
 - Sensor integration
 - Networking

Ahmed M. Eltawil

Wireless Systems and Circuits Laboratory CPCC, Dept. of EECS, Irvine, CA http://newport.eecs.uci.edu/~aeltawil/ aeltawil@uci.edu

Visualizing Memory Behavior
 Cognitive Power Management
 Directional MEMS Antennas

- Software defined radios for public safety applications
 - Architectural design of scalable SDR platforms with minimum power consumption.
- Power management for wireless and multimedia applications.*
 - Cross-layer power management approaches to manage design margins and process variation effects in highly scaled technologies.
 - Focus on low power error tolerant cache and memory system architectures.
- Low power VLSI architectures for key building blocks such as:
 - Sphere decoding for MIMO systems
 - Programmable FEC cores
 - Channel estimation
 - Etc.

Cognitive Power Management

Developed runtime power management algorithms that utilize extra channel "slack" to reduce power by applying aggressive voltage scaling on memories while allowing the hardware to "fail" in a controlled manner.

$$BER_{total} = BER_{channel} + BER_{hardware}$$

Power savings > 40%

- Consume a large portion of the design area
- Store raw soft bit values that have multiple levels of redundancy:
 - 1. At the algorithmic level, coding redundancy exists
 - 2. Most of the time, the receiver experiences a relatively higher SNR than the minimum required for demodulation

Center for Pervasive Communications & Computing University of California · Irvine Visualizing Vemory Behavior

quality and buffering memory voltage

Directional MEMS Antennas

MEMS Integrated Multifunctional Reconfigurable Antenna (MRA)

- □ A single antenna dynamically providing
 - Multi-frequency
 - Multi-polarization
 - Variable Radiation Pattern with beam tilting capabilities
 - $\Box \text{ Lower number of } RF \text{ chains} \Rightarrow Lower \text{ Power}$

MRAARCHITECTURES: MRA Pixel patch Modes of operation: <u>Polarization;</u> LP, RHCP, LHCP. <u>Frequency</u>; 700, 800, 2400, 4900 MH, <u>Radiation Rattern</u>; 30° tilt angle Collaboration with Professor Bedri Cetiner at Utah State University

Michael Green

CPCC, Dept. of EECS, Irvine, CA mgreen@uci.edu

CMOS Design Techniques for Multi-Gb/s Broadband Communication Circuits

CMOS Design Techniques for Multi-Gb/s Broadband Communication Circuits

Prof. Michael Green Dept. of EECS

• Merging results in less power dissipation and less loading on the recovered clock signal.

Equalizer + CDR Operation (2)

Cable output eye diagram.

3.6 m cable 20.0 ps/div 1 22.6244 ns

Cable output eye diagram.

Recovered clock RJ = 2.15 ps rms

Retimer output eye diagram Jitter = 4.96 ps rms

Measured 40 Gb/s Output

40Gb/s MUX output (Differential) with 450 mV differential peak-to-peak vertical eye opening and 1.14 ps rms jitter

Design of High-PSRR VCOs

Effect of Power Supply Noise

- Variation on Vdd causes variation of the dc operating point, changing the dc operating point.
 - As a result, output impedance of M1 and M2 varies, changing the effective load resistance.
 - Finally, self-oscillation frequency deviates.

Transferd Resp.

Transient Response

Payam Heydari Nanoscale Communication IC Labs Dept. of EECS, UC-Irvine, CA 92697-2625 http://newport.eecs.uci.edu/~payam

- Silicon-Based Radar-on-Chip
- THz Active and Passive Imaging
- High-Speed Low-Power Analog-to-Digital Converter
- Broadband Integrated Circuits

Research Areas

Nanoscale Communication IC Labs http://ncic.eng.uci.edu

High-Speed Broadband

- Distributed Amplifiers/Buffers (DAs)
- 6-bit 10GS/sec Low-Power ADC in 130nm CMOS
- Novel BW-Enhancing Techniques for Broadband IC's

RF/Millimeter-Wave

- Multi-Antenna TRX Design
- (Sub)-Millimeter-Wave ICs for Imaging, Sensing, and Communications
- Ultra-Low Power RFIC's for Biomedical Applications
- Designed and fabricated more than 40 RF/Analog silicon chips since 2002
- Filed 10 patents since 2002; three were issued

Coming Attractions (1)

A Fully Integrated 100GHz Focal-Plane Array Passive Imager

Coming Attractions (2)

A CMOS Highly Linear Distributed Amplifier

-lighlights (1)

- Designed and tested the first CMOS 22-29GHz
 automotive radar receiver front-end in TSMC 180nm
- Results appeared in CICC 2007 and T-MTT Aug. 2009
- Measurement done in NCIC Lab
- The first dual-band architecture for millimeterwave 22-29 GHz / 77-81GHz TRX was designed and fabricated in BiCMOS 180nm technology.
- Results appeared in ISSCC 2009 and JSSC Dec. 2009.

- A carrier-less RF-correlation-based IR-UWB TRX front-end in 130nm CMOS was designed.
- Occupying 6.4mm² chip area, the TRX achieves a data rate of 2Gbps and RX sensitivity of -64dBm with a BER of 10⁻⁵.
- Results appeared in RFIC Symp. 2009 and TMTT April 2011

Fig. 7 Die micrograph

- Designed and tested CMOS active power combiner/splitter for multi-antenna transceivers
- The results appeared in July issue of JSSC 2007
- Measurement done in NCIC Lab

- The first reported integration of a silicon-based 94-GHz passive imaging receiver with on-chip baseband circuitry.
- The paper was presented RFIC Symp. 2010.

Student Posters

- An 85-95.2 GHz Transformer-Based Injection-Locked Tripler (ILFT) in 65nm CMOS
 Zhiming Chen and Payam Heydari
- A Novel Highly Inductive, Low Loss Slow Wave CPW Structure Byung-Kwan Chun, Peyman Nazari, Payam Heydari
- A W-band CMOS Receiver Chipset for MMW Radiometer Systems L. Zhou, C.-C. Wang, Z. Chen, and P. Heydari
- A 2.4 GHz Highly Linear LNA Eric Middleton, Payam Heydari
- *Wide-IF-Band CMOS Mixer Design* P.-Y. Chiang and Payam Heydari
- *Distributed Amplifier with GBW/Linearity Enhancement* Amin Jahanian and Payam Heydari
- A Design of Broadband D-band On-chip Antennas Zheng Wang, Zhiming Chen, Payam Heydari

